Filtering trust opinions through reinforcement learning
نویسندگان
چکیده
In open dynamic online communities such as e-commerce, participants need to rely on services provided by others in order to thrive. Accurately estimating the trustworthiness of a potential interaction partner is vital to a participant’s wellbeing. It is generally recognized in the research community that third-party testimony sharing is an effective way for participants to gain knowledge about the trustworthiness of potential interaction partners without having to incur the risk of actually interacting with them. However, the presence of biased testimonies adversely affects a participant’s long term well-being. Existing trust computational models often require complicated manual tuning of key parameters to combat biased testimonies. Such an approach heavily involves subjective judgements and adapts poorly to changes in environment. In this study, we propose the ActorCritic Trust (ACT) model, which is an adaptive trust evidence aggregation model based on the principles of reinforcement learning. The proposed method dynamically adjusts the selection of credible witnesses as well as the key parameters associated with the direct and indirect trust evidence sources based on the observed benefits received by the trusting entity. Extensive simulations have shown that the ACT approach significantly outperforms existing approaches in terms of mitigating the adverse effect of biased testimonies. Such a performance is due to the proposed accountability mechanism that enables ACT to attribute the outcome of an interaction to individual witnesses and sources of trust evidence, and adjust future evidence aggregation decisions without the need for human intervention. The advantage of the proposed model is particularly significant when service providers and witnesses strategically collude to improve their chances of being selected for interaction by service consumers.
منابع مشابه
A Novel Trust Computation Method Based on User Ratings to Improve the Recommendation
Today, the trust has turned into one of the most beneficial solutions to improve recommender systems, especially in the collaborative filtering method. However, trust statements suffer from a number of shortcomings, including the trust statements sparsity, users' inability to express explicit trust for other users in most of the existing applications, etc. Thus to overcome these problems, this ...
متن کاملBehavioral Analysis of Team Members in Virtual Organization based on Trust Dimension and Learning
Trust management and Reputation models are becoming integral part of Internet based applications such as CSCW, E-commerce and Grid Computing. Also the trust dimension is a significant social structure and key to social relations within a collaborative community. Collaborative Decision Making (CDM) is a difficult task in the context of distributed environment (information across different geogra...
متن کاملWho can I trust? Investigating Trust Between Users and Agents in A Multi-Agent Portfolio Management System
Trust between agents has been explored extensively in the literature. However, trust between agents and users has largely been left untouched. In this paper, we report our preliminary results of how reinforcement-learning agents (i.e. broker agents, or brokers) win the trust of their client in an artificial market I-TRUST. The goals of these broker agents are not only to maximize the total reve...
متن کاملEstimating Trust Strength For Supporting Effective Recommendation Services
In the age of information explosion, Internet facilitates product searching and collecting much more convenient for users. However, it is time-consuming and exhausting for users to deal with large amounts of product information. In response, various recommendation approaches have been developed to recommend products that match users’ preferences and requirements. In addition to the well-known c...
متن کاملI-TRUST: investigating trust between users and agents in a multi-agent portfolio management system
Trust between agents has been explored extensively in the literature. However, trust between agents and users has largely been left untouched. In this paper, we report our preliminary results of how reinforcement-learning agents (i.e. broker agents, or brokers) win the trust of their client in an artificial market I-TRUST. The goals of these broker agents are not only to maximize the total reve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Decision Support Systems
دوره 66 شماره
صفحات -
تاریخ انتشار 2014